Healing & Repair

Dr Adel Abdel-Azim

Professor & Chairman of Oral Pathology Department, Faculty of Dentistry, Ain-Shams University, Cairo, Egypt

Healing and Repair

Healing and Repair

- Definitions
- Major Causes of Tissue Destruction
- Regeneration
 - Control of Regeneration
 - Cell cycle
- Repair
 - Biosynthesis of proteoglycans
 - Biosynthesis of collagen
 - Types of collagen
 - Induction of Repair
 - 1. Organization
 - 2. Progressive fibrosis
 - Cell-Matrix Interactions

Healing and Repair – Continue ...

- Wound Healing
 - Stages in wound healing
 - Healing by First Intention:
 - Healing by second Intention:
 - Factors influencing wound healing
 - Factors accelerating wound healing
 - Complications of wound healing
 - Healing of Fractures
 - Healing of tooth socket
 - Complications of fracture healing
 - Pathological Fractures

Definitions

Healing is the replacement of destroyed or lost tissue by viable tissue. Healing is achieved in two ways:

- Regeneration: Is the replacement of the damaged tissue by the same tissue type as was originally there.
- Repair: Is the replacement of damaged tissue by fibrous
 tissue. Repair occurs when regeneration is not possible and
 usually ends by fibrosis and scar formation..

Most organs heal using a mixture of both mechanisms.

Major Causes of Tissue Destruction

- 1. Lack of blood supply- ischemic necrosis
- 2. Inflammatory agents
 - 1. By direct physical or toxic effects
 - 2. Indirectly as a result of the host response
- 3. Traumatic excision
 - 1. Accidental
 - 2. Surgical
- 4. Radiotherapy

Regeneration

Types of Cells

- Labile cells (intermitotic) continue to proliferate throughout life, e.g. epidermis, endothelium, haemopoietic tissue, endothelial cells
- Stable cells (reversibly postmitotic) which retain the capacity to regenerate and occasionally exhibit mitoses by virtue of normal cell-turnover, e.g., liver, renal tubular epithelium, smooth muscle
- Permanent cells (irreversibly postmitotic) which cannot reproduce themselves after attaining maturity, e.g. neurones of the C.N.S., sensory organs, renal glomeruli, striated muscle

Regeneration

- Labile tissues heal by regeneration with little or no repair.
- Permanent tissues are incapable of regeneration and heal entirely by repair.
- Most organs show evidence of both processes.

Cell Cycle

Granulation Tissue – Mechanism of Formation

- Demolition: Removal of foreign and dead tissues by macrophages
- Fibroblast activity
- Ingrowth of capillaries

2. Progressive fibrosis

- Continued accumulation of intercellular collagen and diminution of vascularity and cellularity
 - Collagen re-orientation along lines of stress remodeling
 - Diminished cellularity
 - Formation of an avascular, hypocellular scar
- Further changes in scars:
 - Cicatrization -a late diminution in size resulting in deformity
 - Calcification
 - Ossification

Wound Healing

- Stages in wound healing
- Healing by First Intention:
- Healing by second Intention:
- Factors influencing wound healing
- Factors accelerating wound healing
- Complications of wound healing
- Healing of Fractures
- Healing of tooth socket
- Complications of fracture healing
- Pathological Fractures

Wound Healing - Types

- A clean wound with closely apposed marginsan incised wound (healing by first intention)
- An open or excised wound (healing by second intention).
- There are no fundamental differences
 between these two types, they merely differ in the degree to which the various stages apply.

Stages in wound healing

- Escape of blood and exudate
- Acute inflammatory response at the margins
- Hardening of the surface forming a scab
- Demolition by macrophages
- Organization
- Epidermal proliferation
- Contraction of the wound
- Progressive increase in collagen fibers
- Loss of vascularity and shrinkage of the scar

Healing by First Intention:

- Occurs in small wounds that close easily
- Epithelial regeneration predominates over fibrosis
- Healing is fast, with minimal scarring/infection
- Examples:
 - Paper cuts
 - Well-approximated surgical incisions
 - Replaced periodontal flaps

Granulation Tissue - Healing

Healing by second Intention:

- Greater tissue loss
- More inflammatory exudate and necrotic tissue to remove
- Wound contraction is necessary
- More granulation tissue is required, a bigger scar is formed and this may result in deformity
- Slower process
- Increased liability to infection

Healing by Second Intention Key Facts:

- Occurs in larger wounds that have gaps between wound margins
- Fibrosis predominates over epithelial regeneration
- Healing is slower, with more inflammation and granulation tissue formation, and more scarring
- Examples: large burns and ulcers, extraction sockets, external-bevel gingivectomies

First Intention Versus Second

first intention healing

second intention healing

Healing by First Intention

HEALING BY FIRST INTENTION

Healing by Secondary Intention

HEALING BY SECOND INTENTION

Wound contraction

Inflammatory Cells

- **Acute Inflammatory Cells**
 - PNL Microphages

- **Chronic Inflammatory Cells**
 - Macrophages Histiocytes Monocytes

- Lymphocytes
- Plasma cells

Factors influencing wound healing

1. Local factors adversely affecting healing

2. General factors adversely affecting healing

Local factors adversely affecting healing

- Type of wounding agent; blunt, crushing, tearing etc.
- Infection
- Foreign bodies in wound
- Poor blood supply
- Excessive movement
- Poor apposition of margins, e.g. large hematoma formation
- Poor wound contraction
- Infiltration by tumor
- Previous irradiation

General factors adversely affecting healing

- Poor nutrition
 - Deficiency of protein
 - Lack of ascorbic acid (vitamin C)
 - Zinc deficiency
- Excessive glucocorticosteroid production or administration
- Fall in temperature
- Jaundice

Factors accelerating wound healing

- Ultraviolet light
- Administration of anabolic steroids, deoxycorticosterone acetate, and growth hormone
- Rise in temperature
- Hyperbaric oxygen

Complications of wound healing

- Wound rupture
- Infection
- Implantation of epidermal cells giving rise to keratin-filled epidermoid cyst
- Weak scars
- Cicatrization and deformity
- Keloid formation
- Proud flesh: The swollen flesh that surrounds a healing wound, caused by excessive granulation tissue.
- Malignant change

Keloid scar

Excessive fibrosis and Cicatrization

Proud flesh

The swollen flesh that surrounds a healing wound, caused by excessive granulation tissue.

Healing of Fractures

- Hemorrhage: This is due to torn blood vessels.
- Hematoma formation
- Transient inflammatory reaction
- Demolition
- Organization of the clot
- Osteoclastic activity
- Osteoid tissue formation
- Calcification of osteoid
- Remodeling

Uncomplicated bone repair

(remodeling)

(callus)

formation

- Extravasated blood which then colts
- The blood clot is organized to form granulation tissue
- Transient inflammatory reaction
- Ostoclastic resorption of the crestal bone and small specules of bone
- Gingival <u>epithelial</u> proliferation and migration occurs across the defect (10-14 days)
- Osteoblasts appear and the GT is replaced by woven bone
- After approximately 6 weeks, the outline of the socket can be discerned both histologically and radiographically
- Formation of cortical and canellous bone and disappearance of the lamina dura.
- Radiographically, the socket is generally obliterated between 20 and 30 weeks after extraction (around 6 months)

Complications of fracture healing

- Delayed union
- Mal-union e.g. Angulation, Shortening,
- Fibrous union resulting from: Excessive movement, Infection, Ischemia.
- Non-union if soft-tissues such as muscle or fat are interposed between the severed ends

Pathological Fractures

- Osteoporosis, especially steroid induced
- Metastatic tumors
- Primary tumors (benign and malignant)
- Paget's disease
- Bone lesions of hyperparathyroidism
- Osteogenesis imperfecta